Dimensions $2 \times 2 \times 1^n$ Connectors SMA's and feedthru capacitorSMA ConnectorPackaging Sealed steel can POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at $+25^{\circ}$ C Supply Voltage $+15 \text{ VDC}$ ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^{-7}$, 0 to $+10\text{VDC}$ Negative slope CRYSTAL Type 5 MHz SC- cutSMA Connector $+44 \times 14^n$ deep $+15 \times 10^{-6}$ Wenzel Associates, Inc. Type 5 MHz SC- cutWenzel Associates, Inc. Test of the slope -1000^{-1} Prove State Street -2.2081 Prove Street $-0.750^{-1.000}$ Wenzel Associates, Inc. Type -5 MHz SC- cutProve Street $-0.750^{-1.000}$ Prove Street $-0.750^{-1.000}$ Prove Street $-0.750^{-1.000}$ Prove Street $-0.750^{-1.000}$ Prove Street $-0.750^{-1.000}$ <							DUDI	
OUTPUT Frequency 5 MHz Level 13 ± 20Bm into 50 ohms STABILITY Aging 1 × 10 ⁻¹ per day after 30 days operating, typical Phase Noise L(f) 10 Hz -160 dbc 10 Hz -165 dbc 10 Hz -165 dbc Temperature Stability ± 2 × 10 ⁻¹ , 0° to +50°C (Ref +25°C) MECHANICAL								
Frequency 5 MHz 5 MHz Level 13 ±22Bm into 50 ohms 5 MHz 3 ±28 m into 50 ohms 5 MHz 3 ±010 por day attr 30 days oporating, typical Phase Mulse L(f) 10 tht 10 tht -150 dBs 10 tht -156 dBs 10 tht -165 dBs 10 tht -1000 tht 2 2 X 11 -0.000 tht Connectors SMAS and feedthu capacitor Packaging -0.000 tht Supply Voltage -0.000 tht -15 Volt -0.000 tht Connector -0.000 tht -22 Watis at +25°C -0.000 tht Supply Voltage -0.000 tht <			02	-17-10			00	DIT
S MHz ² Level 13 ± 202m into 50 ohms STABILITY Aging 1 × 10 ⁻¹ per day after 30 days operating, typical Phase Noise L() 10 Hz185 dBc 10 Hz185 dBc 10 Hz185 dBc 10 Hz185 dBc 10 Hz185 dBc Temperature Stability ± 2 × 10 ⁻¹ , 0 ⁻¹ 0 × 50 ⁻¹ (Fei + 25°C) MECHANICAL Dimensions 2 × 2 × 11 ⁺ Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power < 2 × 2 × Matts of 5 minutes +15 VOC ADJUSTMENT Mechanical Tuning ± 1 × 10 ⁵ Electrical Tuning ± 2 × 10 ⁻¹ , 0 to +10VDC Negative stope CRYSTAL Type 5 MHz SC- cut SMA's and Electrical Tuning ± 2 × 10 ⁻¹ , 0 to +10VDC Negative stope CRYSTAL Type 5 MHz SC- cut SMA's and Electrical Tuning ± 2 × 10 ⁻¹ , 0 to +10VDC Negative stope CRYSTAL Type 5 MHz SC- cut SMA's and Commeter marked on unit. SMA's and teentime transmitter to the stope CRYSTAL Type 5 MHz SC- cut SMA's and Commeter marked on unit. SMA's and teentime transmitter to the stope CRYSTAL Type 5 MHz SC- cut SMA's and teentime transmitter to the stope CRYSTAL Type 5 MHz SC- cut SMA's and teentime transmitter to the stope CRYSTAL Type SMA's and teentime transmitter to the stope SMA's and teentime transmitter to the stope CRYSTAL Type SMA's and teentime transmitter to the stope SMA's and teentime transmitter to the stope SMA								
Level 13 2268m into 50 ohms STABILITY Aging 1 × 10 ⁻¹⁰ per day after 30 days obset (f) 10 Hz - 135 dBc 10 Hz - 135 dBc 10 Hz - 165 dBc 1 kHz - 165 dBc 1 kHz - 165 dBc 1 kHz - 165 dBc 1 kHz - 165 dBc 1 2 3 4 1 1 2 3 1 2 3 4 1 1 2 3 1 2 3 4 1 1 2 3 1 1 2								
13 ± 2ddBn into 50 ohms STABILITY Aging 1 × 10 ⁻¹⁰ per day after 30 days operating, typical Phase Noise L(f) 10 Hz - 165 dBc 10 Hz -								
STABLITY Aging 1×10^{-10} per day after 30 days operating, typical 10 Hz - 136 dBc 10 Hz - 136 dBc 10 Hz - 136 dBc 10 Hz - 136 dBc 10 Hz - 166 dBc $1 \text{ Hz} + 2 \times 10^9$ or $16 \times 50^{\circ}$ C (Ref +25 °C) MECHANICAL Dimensions $2 \times 2 \times 10^7$ to $10 \times 50^{\circ}$ C (Ref +25 °C) MECHANICAL Dimensions $2 \times 2 \times 10^7$ such that 2×10^7 devices and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power $< 22 \text{ Watts alt} + 25 ^{\circ}$ Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^9$ devices 20° d								
Aging 1×10^{-10} per day after 30 days operating, typical Phase Noise L(1) 10 Hz - 165 dBc 10 Jz - 3 Jz + 10 Jz - 0.000 10 Jz - 3 Jz + 10 Jz + 1000 10 Jz - 3 Jz + 1000 10								
$\frac{1}{x} 10^{-10} \text{ per day}$ $\frac{1}{x} 10^{-10} \text{ per day}$ $\frac{1}{x} 10^{-10} \text{ per day}$ $\frac{1}{x} 10^{-10} \text{ loc} 1^{-10} \text{ color} $								
after 30 days operating, typical Phase Noise L(f) 10 Hz - 135 dBc 10 Hz - 165 dBc 1 2 3 $\frac{4}{3}$ - 0.000 $\frac{20N}{2}$ Electrical Turing SMAC annector SMA's and feedthru capacitor Packaging Sealed steel can POWER RECURIENENTS Warm-Up Power <2 Watts at +25°C Supply Voltage $\pm 15 VDC$ ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^7$, 01 o +10VDC Negative stope CRYSTAL Type 5 MHz SC- out SMAC connectors SMAZ connectors SMAC connectors SMAC connector $\frac{100}{2}$ $\frac{10}{2}$ $\frac{10}{2}$ $\frac{100}{2}$	Aging							
Phase Noise L(f) 10 Hz - 135 dBc 10 Hz - 165 dBc 10 Hz - 165 dBc 10 Hz - 165 dBc $1 \text{ L} 2 \text{ a} \frac{4}{9} = 0.500$ $1 2 \text{ a} \frac{4}{9} = 0.500$ $1 2 3 \frac{4}{9} = 0.500$ $1 3 \frac{4}{9} = 0.50$								
$10 \text{ Hz} - 135 \text{ dBc}$ $10 \text{ Hz} - 165 \text{ dBc}$ $12 \text{ x} 10^{9}, 0^{\circ}\text{to} + 50^{\circ}\text{C} (\text{Ref} + 25^{\circ}\text{C})$ $\frac{1}{2} \text{ x} 23 \text{ t}^{9}, 0^{\circ}\text{to} + 50^{\circ}\text{C} (\text{Ref} + 25^{\circ}\text{C})$ $\frac{1}{2} \text{ x} 23 \text{ t}^{17}$ $2 \text{ x} 22 \text{ t}^{17}$ $Connectors$ $SMA^{2} \text{ and feed/hru capacitor}$ $Packaging$ $Sealed steel can$ $POWER RECUIREMENTS$ $Warm-Up Power$ $< 22 \text{ Watts at} + 25^{\circ}\text{C}$ $Supply Voitage$ $+15 \text{ VDC}$ $ADJUSTMENT$ $Mechanical Tuning$ $\frac{1}{2} \text{ x} 10^{7}, 0 \text{ to} + 10\text{ VDC}$ $Negative slope$ $CRYSTAL$ $Type$ $5 MHz SC- cut$ $Wenzel Associates, Inc.$ $Math. Texa$ $Wark SC - cut$ $Wenzel Associates, Inc.$ $Wenzel Associates, Inc.$ $Wenzel Associates, Inc.$ $Wenzel Associates, Inc.$ $Wenzel Constant Crystal Oscillator$ $Wenzel Constant Crystal Oscillator$ $Wenzel Constant Crystal Oscillator$ $Wenzel Massociates, Inc.$ $Wenzel Associates, Inc.$ $Wenzel Associates, Inc.$ $Wenzel Constant Crystal Oscillator$ $Wenzel Constant Crystal Crystal$		-	0.7		0.5			
$100 \text{ Hz} - 160 \text{ dBc}$ $1 \text{ kHz} - 165 \text{ dBc}$ $10 \text{ kHz} - 165 \text{ dBc}$ $12 \text{ 3} \text{ 4} = 0.50^{\circ} \text{ CONN} + \text{UNCTON}$ $\frac{1}{2} \text{ Supply Voltage}$ $2 \times 2 \times 1^{\circ}$ Connector SMAS and feedthru capacitor Packaging Sealed stell can POWER RECURREMENTS Warm-Up Power $< 5 \text{ Watts for 5 minutes}$ Total Power $< 2.2 \text{ Watts at } +25^{\circ} \text{ C}$ Supply Voltage $+15 \text{ VDC}$ ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^{7}, 0 \text{ to +10VDC}$ Negative slope CRYSTAL Type $5 MHz SC- cut$ Connector Wenzel Associates, Inc. The Solution Crystal Oscillator 		č	50	50	60 00 00 00 00 00 00 00 00 00 00 00 00 0			
$1 \text{ kHz} - 165 \text{ dBc}$ $10 \text{ kHz} - 165 \text{ dBc}$ $12 \text{ x 10}^{9}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 0^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 1^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 1^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 1^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 1^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ z 2}, 1^{\circ}, 0^{\circ} \text{ to } 50^{\circ} \text{ C} (\text{Ref} + 25^{\circ} \text{ C})$ $\frac{1}{2} \text{ cond} \text{ cond} \text{ trans}$ $\frac{1}{2} \text{ cond} \text{ to } 10^{\circ} $								
10 kHz -165 dBC Temperature Stability $\pm 2 \times 10^5$, 0° to $+50^{\circ}\text{C}$ (Ref $+25^{\circ}\text{C}$) MECHANICAL Dimensions $2 \times 2 \times 1^1$ Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power $-5 \text{Watts at} +25^{\circ}\text{C}$ Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^7$, 0 to $+10^{\circ}\text{DC}$ Electrical Tuning $\pm 2 \times 10^7$, 0 to $+10^{\circ}\text{DC}$ SMA's concepton Warm-Up Power $-2.2 \text{ Watts at} +25^{\circ}\text{C}$ Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^7$, 0 to $+10^{\circ}\text{DC}$ Resolution Freq Adjust Seal Screw -0.750 -1.000 -0.750 -1.000 -0.750					— 0.500			
To NAZ 100 00C Temperature Stability $\pm 2 \times 10^3$, 0° to +50°C (Ref +25°C) MECHANICAL Dimensions $2 \times 2 \times 1^7$ Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power < 5 Watts for 5 minutes Total Power < 2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^7$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut The content of the second state of the second		4						
The perturber Stability $\pm 2 \times 10^{-9}$, 0° to +50°C (Ref +25°C) MECHANICAL Dimensions $2 \times 2 \times 1^{+1}$ Connectors SMAC sand feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power <2.2 Watts for 5 minutes Total Power <2.2 Watts at +25°C Supply Voltage +15 VDC ADJUST MENT Mechanical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut 1×10^{-6} 1×10^{-7} 1×10^{-6} 1×10^{-7} 1×10^{-6} 1×10^{-7} 1×10^{-6} 1×10^{-7} 1×10^{-7			1	123	$3 4 \square - 0.000$			ing
L 2 X 10 [°] , 0 [°] 10 ± 30 [°] C (Hel ± 25 C) MECHANICAL Dimensions 2 x 2 X 1 [°] Connectors SMA S and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power < 2.2 Watts for 5 minutes Total Power < 2.2 Watts at ± 25 [°] C Supply Voltage ± 15 VDC ADJUST MENT Mechanical Tuning ± 2 x 10 [°] Electrical Tuning Electrical Tuning Ele	Temperature Stability	TYP.	ſ	പ്പാ		2 Supp	ly Voltag	e
MECHANICAL Dimensions 2 X 2 X 1" Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER RECUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning ±1 x 10 ⁻⁶ Electrical Tuning ±2 x 10 ⁻⁷ , 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut	± 2 x 10 ⁻⁹ , 0° to +50 ℃ (Ref +25 ℃)	17	Ç		\sim)
Dimensions $2 \times 2 \times 1^{"}$ Connectors SMAC connector Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at $+25^{\circ}$ C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^{-7}$, $0 \text{ to} +10 \text{ VDC}$ Negative slope CRYSTAL Type 5 MHz SC- cut SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ SMA Connector $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ $t = 100^{-10}$ t	MECHANICAL	<u> </u>			0.500	4 KF 0	ulput	
Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Wenzel Associates, Inc. Austin, Texas Method Method Sealed Steel Can The state of reference only, they are not marked on unit. Source of the state	Dimensions							
Connectors SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power < 5 Watts for 5 minutes Total Power < 2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^6$ Electrical Tuning $\pm 2 \times 10^7$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Wenzel Associates, Inc. Austin, Texas Merical Oscillator PN: 01-22081 Net Oscillator	2 x 2 x 1"		Γ	1		SMA Connector		
SMA's and feedthru capacitor Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut * Merzel Associates, Inc. The: 5 MHz-SC Streamline Crystal Oscillator * Dit-22081 * Date: * Date: * Date: * Date: * Date: * Date: * SX Dec: * SMM: $*$ Dec: * SM: $*$ Dec: * SMM: $*$ Dec: * SMM: $*$ Dec: * SM:	Connectors		ے ا	上合合				
Packaging Sealed steel can POWER REQUIREMENTS Warm-Up Power < 5 Watts for 5 minutes Total Power <2.2 Watts at +25 °C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Wenzel Associates, Inc. Mustin, Toxas Mustin,	SMA's and feedthru capacitor	Δ			~))			
Sealed steel can POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25 °C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-0}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Multic Scheduler 5 MHz SC- cut $Multic Scheduler Multic SchedulerMultic Scheduler Multic Scheduler Multic SchedulerMultic Scheduler Multic Scheduler Multic SchedulerMultic SchedulerMultic Scheduler Multic SchedulerMultic SchedulerMultic Scheduler Multic SchedulerMultic SchedulerMultic SchedulerMultic SchedulerMultic SchedulerMultic S$					() — 0.750			
POWER REQUIREMENTS Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning ±1 x 10 ⁻⁶ Electrical Tuning ±2 x 10 ⁻⁷ , 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut								
Warm-Up Power <5 Watts for 5 minutes Total Power <2.2 Watts at +25 °C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning ±1 × 10 ⁻⁶ Electrical Tuning ±2 × 10 ⁻⁷ , 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut	POWER REQUIREMENTS						<i></i> ,	
S Watts for 5 minutes Total Power <2.2 Watts at +25 °C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Title: 5 MHz SC- cut Title: 5 MHz-SC Streamline Crystal Oscillator PN: 0×2000 0×20000 0×2000 0×20000 0×200000 0×200000 0×200000000 $0 \times 20000000000000000000000000000000000$	Warm-Up Power					·		
<pre>< 2.2 Watts at +25 °C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning <math>\pm 1 \times 10^{-6} Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut $Wenzel Associates, Inc. Austin, Texas Wenzel Associates, Inc. Inter Team Inter Crystal Oscillator PN: 501-22081 Point Oxx Dec: 0 XX Dec: 0 XX$</math></pre>	<5 Watts for 5 minutes	I YP.						
<pre><2.2 Watts at +25°C Supply Voltage +15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut</pre>	Total Power					Freg Adjust Se	al Screw	
+15 VDC ADJUSTMENT Mechanical Tuning $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut	<2.2 Watts at +25℃		0			. ,		
ADJUSTMENT Connector numbers are for reference only, they are not marked on unit. $\pm 1 \times 10^{-6}$ Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slope CRYSTAL Wenzel Associates, Inc. Type 5 MHz SC- cut Title: 5 MHz-SC Streamline Crystal Oscillator P/N: Ferror 5 01-22081 - 02-17-10 True: Toterment 0.XX Dec: 0.XX Dec: 0.XX Dec:	Supply Voltage	17	(\bigcirc)		∭ — 0.750			
Mechanical Tuning $\pm 1 \times 10^{-6}$ Connector numbers are for reference only, they are not marked on unit.Electrical Tuning $\pm 2 \times 10^{-7}$, 0 to +10VDC Negative slopeWenzel Associates, Inc. Austin, TexasCRYSTAL Type 5 MHz SC- cutWenzel Associates, Inc. Austin, TexasTitle: 5 MHz-SC Streamline Crystal OscillatorP/N: 501-22081Per: 02-17-10Date: 501-04605		V			— 1.000			
the chain can full if y is the probability of the	ADJUSTMENT		~					
$ \frac{\pm 1 \times 10^{-0}}{Electrical Tuning} $ $ \frac{\pm 2 \times 10^{-7}, 0 \text{ to } \pm 10 \text{ VDC} $ Negative slope CRYSTAL Type 5 MHz SC- cut $ \frac{1}{5 \text{ MHz-SC Streamline Crystal Oscillator} } $ $ \frac{1}{7 \text{ fitte:}} \frac{1}{5 \text{ MHz-SC Streamline Crystal Oscillator} } $ $ \frac{1}{7 \text{ fitte:}} \frac{1}{5 \text{ 02-17-10}} $ $ \frac{1}{7 \text{ for an example}} $ $ \frac{1}{7 \text{ for an example}} \frac{1}{7 \text{ ox } 2 \text{ for an example}} $	Mechanical Tuning							
Electrical luning ±2 x 10 ⁻⁷ , 0 to +10VDC Negative slope CRYSTAL Type 5 MHz SC- cut Title: 5 MHz-SC Streamline Crystal Oscillator P/N: 5 01-22081 - 02-17-10 Drawn: Ref: 501-04605 Toterance: 0.XX Dec: 0.XX Dec: 0.	$\pm 1 \times 10^{-6}$		uloj a					
$ \begin{array}{c} \pm 2 \times 10^{-7}, 0 \text{ to } \pm 10 \text{VDC} \\ \text{Negative slope} \\ \text{CRYSTAL} \\ \text{Type} \\ \text{5 MHz SC- cut} \end{array} \\ \hline \textbf{Wenzel Associates, Inc.} \\ \textbf{Austin, Texas} \\ \hline \textbf{Title:} \\ \textbf{5 MHz-SC Streamline Crystal Oscillator} \\ \hline \textbf{P/N:} \\ \textbf{6} \\ \textbf{02-17-10} \\ \hline \textbf{02-17-10} \\ \hline \textbf{Corrances:} \\ \hline \textbf{02-17-10} \\ $	Electrical Tuning							
Negative slope CRYSTAL Type 5 MHz SC- cut								
CRYSTAL Wenzel Associates, Inc. Type 5 MHz SC- cut Title: 5 MHz-SC Streamline Crystal Oscillator P/N: 6 02-17-10 Tolerances: 0.XX Dec: 0.XX Dec: FSCM:								
Type Wenzer Associates, Inc. 5 MHz SC- cut Title: S MHz-SC Streamline Crystal Oscillator P/N: Bev: Date: Drawn: Ref: 501-02081 - 02-17-10 Toterances: Toterances: Toterances: 0.XX Dec: 0.XX Dec: FSCM: 1			_	_				
Austin, Texas S MHz SC- cut Title: S MHz-SC Streamline Crystal Oscillator P/N: Date: Drawn: Ref: S01-22081 - O2-17-10 Drawn: Ref: Tolerances: 0.XX Dec: 0.XX Dec: FSCM:			W		Wenzel Associate	es, Inc.		
Inter- 5 MHz-SC Streamline Crystal Oscillator P/N: Rev: Date: Drawn: Ref: 501-22081 - 02-17-10 Drawn: Ref: Tolerances: 0.XX Dec: 0.XX Dec: FSCM: 1				Ĵ		-		
P/N: Rev: Date: Drawn: Ref: 501-22081 - 02-17-10 501-04605	5 MITZ 50- CUL	Title:	_	N 41 I				
501-22081 - 02-17-10 501-04605 Tolerances: 0.XX Dec: 0.XXX Dec: FSCM:			5	IVIHZ-	-SC Streamline Crys	stal USCIII	ator	
Tolerances: 0.XX Dec: FSCM:			01 01	0004		Drawn:		04605
(hotor as tracyo)		5	01-22	2081	- 02-17-10		501	-04005
Dimensions are in inches ± 0.030 " ± 0.010 " 62821 Page 1 of 1		Tolera	nces:					
				inches	±0.030" ±0.010"	62821	Page 1 o	of 1