OUTPUT Frequency 100 MHz Sine +13 dBm ±2 dB into 50 ohms STABILITY Aging

$\pm 5 \times 10^{-7}$ per year, Year 1 $\pm 2 \times 10^{-7}$ per year, Year 2 $\pm 1 \times 10^{-7}$ per year, thereafter

Phase Noise L(f) Static, Sine Output

1 Hz -70 dBc/Hz 10 Hz -100 dBc/Hz 100 Hz -130 dBc/Hz 1 kHz -160 dBc/Hz 10 kHz -173 dBc/Hz 100 kHz -180 dBc/Hz

G-Sensitivity

2e-11 per axis from 2 Hz to 300 Hz

Temperature Stability, typical

< ±5 x 10⁻⁸, +20° to +40°C (Ref +33°C) Normal operating temp, +30°C

Harmonics,

-30 dBc

Spurious

-110 dBc ±100kHz, Measured to -90 dBc

Load Sensitivity, typical

±10e-9 for 5% change

Line Sensitivity, typical

±10e-9 for 5% change

MECHANICAL

Dimensions

 $4 \times 4.5 \times 0.9$ ", plus brackets

Connectors

SMA for RF

Male DB 9 Connector for DC

Packaging

Machined Aluminum enclosure

Weight

0.8 LBS, typical

POWER REQUIREMENTS

Warm-Up Power

≤ 7 Watts for 10 minutes, typical

Total Steady-State Power

5 Watts, typical

Supply Voltage

+12 VDC +-5%

ADJUSTMENT

Electrical Tuning Sensitivity

 $>\pm6 \times 10^{-7}$ min, 0 to ±10 VDC,

Electrical Tuning Bandwidth

>100 Hz, Lock below 1 Hz for best performance under vibration

OTHER

Vibration Profile

Vibe Freq Hz (g²/Hz) 0.52 grms 2 .001 4 .001 4 .002 60 .002 70 .0001 200 .0001 300 1e-5 10000 1e-6

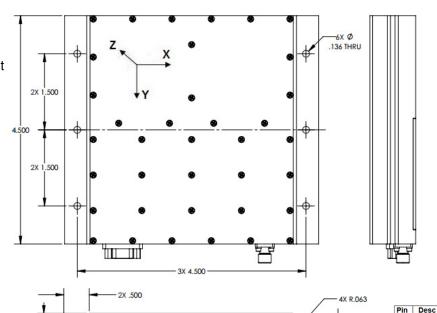
Design

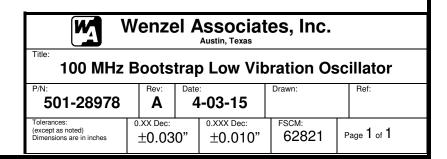
Vibration isolation/compensation system for best noise under vibration Utilizes Bootstrap Technology

.900

()(****)(*

Test Data


- Output Level
- Phase Noise
- G-sensitivity in 3 axes
- Temperature Stability
- Short-Term 1 second
- Harmonics, Subs, Products, Spurs
- Power Warm-up and Total


CRYSTAL

Type

Very low-g sensitivity 100 MHz SC

REV	DATE	REVISION RECORD	DWN	AUTH
-	04-02-15	Draft	Liz	
Α	4-03-15	100 MHz	Liz	

Ø

+Vin NC NC NC NC GND, Case

NC ET Tune

NC NC

2X .090